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S U M M A R Y  
The laminar boundary layer flow of a low Prandtl number fluid with arbitrary thermal properties past a flat plate is 
studied by the method of matched asymptotic expansions. By assuming power law relations for the viscosity, density 
and Prandtl number, the first order results for the skin friction, the recovery factor and the heat transfer rate at the 
wall are obtained. It turns out that the outer flow in the thermal boundary layer is governed by a simple nonlinear 
differential equation of second order, which is correct to all orders in Prandtl number. Exact and approximate solu- 
tions to this outer equation are obtained. Further, it is shown that the first order terms for the recovery factor are 
independent of the thermal properties, while the heat transfer terms have a complicated dependence. The skin friction 
result shows the dependence on thermal properties, Mach number and heat transfer rate. 

1. Introduction 

The problem of the compressible boundary layer on a flat plate at a given Mach number depends 
upon two parameters of the fluid: the Prandtl number and the viscosity-temperature relation- 
ship. The problem has been studied extensively in the past and good reviews of the results avail- 
able at present have been made by Stewartson [1] and Lagerstrom [2]. Except for certain specific 
numerical calculations, all the available works invariably assume that the viscosity p is 
proportional to the temperature T and that the Prandtl number a is constant ([1, 2]). For 
most of the gases, however, the viscosity-temperature relationship is better represented either 
by a simple power law p oc T TM, where w is a constant usually between �89 and t, or by the Suther- 
land law which involves two constants and so is somewhat more complicated. 

In the present work we aim to study the case of a flow of general variable thermal properties 
at low Prandtl numbers. The problem of low Prandtl number is of interest for liquid metals. 
For air the Prandtl number is 0.73 a t  normal temperature and pressures, but flights at high 
speeds and altitudes lead to high temperatures and low pressures at which the Prandtl number 
of the air can become very small [3]. Moreover, it is well-known [4] that the studies of such 
asymptotic solutions are exceedingly useful from a practical point of view, owing to the fact 
that in many situations these have been found to hold with surprising accuracy even under 
distinctly non-asymptotic conditions. Edward and Tellep [5] have analysed the heat transfer 
with variable thermal properties by ignoring the viscous dissipation. To account for the varia- 
tion of thermal properties with temperature, these authors have used for the term pp/a in the 
energy equation a power law dependence of the type T". They have solved the problem for a 
range of m between zero and unity (0 < m < 1). However, for a perfect gas and for most liquids, 
m is usually between zero and minus unity ( -  1 < m < 0). It is for this range that we study 
here the heat transfer problem taking full account of dissipation. Furthermore, the case of the 
insulated wall is also studied for arbitrary fluid properties. 

To study the problem of low Prandtl numbers systematically we have used the method of 
matched asymptotic expansions. In this method we usually study the inner and outer limits of 
the equations and try to match them in an overlap domain. It turns out that the outer flow is 
governed by a simple nonlinear equation of second order, which is correct to all orders in 
Prandtl number. When the wall is thermally insulated, the simple solution T= constant of this 
outer flow equation (correct to zeroth order in Prandtl number) matches with the corresponding 
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inner solution which simplifies the problem considerably. For the heat transfer problem nu- 
merical solutions for this outer equation are carried out yielding an outer solution correct to all 
orders in Prandtl number. However, an approximate solution is also given in the Appendix 
and compared with the exact results. Edward and Tellep [5] have solved what we call here the 
zeroth order outer equation; this solution is, however, uniformly valid up to the order a~ for 
the heat transfer case. To get higher order terms it is essential to formulate a different inner limit 
for the equations. 

2. Governing equations 

The boundary layer equations for the steady flow of a compressible fluid past a flat plate can 
be written in the usual notations [1] as 

(U f " ) '  + f f "  = 0,  (1) 

( N  T) '  + f T '  + C N  f " 2 = O .  (2) 

Here f '  is the longitudinal velocity u at any point as a fraction of the free stream value U~ ; T 
is the temperature as a fraction of the free stream value Too. 

The Prandtl number a and the quantities N and C are defined by 

a = # C p / K ,  N = p # / p o o # o o ,  C = ( ? - I ) M  2 ,  

where Cp is the specific heat, K the thermal conductivity, ~ the ratio of specific heat and Moo 
the free stream Mach number. Dashes on f and T denote the differentiation with respect to 
Howarth-Dorodnitsyn variable 

= ( p / p o o ) d y ,  
~I \ 2 # o o x /  o 

where x is the distance along the plate measured from the leading edge and y is the distance 
normal to it. 

The boundary conditions on the velocity and temperature profiles are 

f(0)  = 0 =if(0) ,  f ' ( o o ) =  1, (3a) 

T(0) = Tw or T'(0) = 0; T(oo)= 1. (3b) 

In (3b), only one of the two conditions at the wall is required; the first prescribes the wall tem- 
perature at a constant value; the second implies an insulated plate. 

To account for the variation of fluid properties with temperature,we use the power law 
relations 

#/#oo = T w , p/poo -- T ~ a/aoo = T b . (4) 

For a given fluid, the exponents w, a and b are to be determined from curve fitting to experimental 
data or by some theoretical consideration. Eliminating p,/~ and a in favour of T from (1) and 
(2) we get 

f'" + f "  If T -  ca + ~) + (a + w) T' /T]  = O, 

T" + T'  [aoof T b - " -  w + (a + w - b) T ' / T ]  + Caoof ''2 T b = O. 

Further, introducing the transformation* 

b - a - w  
T = h ' + l ,  m -  (5) 

l + a + w - b  

the above equations reduce to 

* The symbol m defined in (5) does not denote the same quanti ty as in Edward and Tellep [5]. 
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f ' "  + f "  ( f h " - n h ' / h )  = O . 

h" + aoof hmh ' + a o ~ E h - " f  "z = O, 

where 

n = - ( a + w ) ( l + m ) ,  E = C / ( I + m ) .  
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(6) 

(7) 

(8) 
The boundary conditions for the velocity profile are the same as (3a) and for the temperature 
profile they are 

h(O) = h w = T_w 1/(1+") or h'(0)= 0, h(oo)= 1. (9) 

3. Analysis at low Prandtl number 

We now solve the equations (6) and (7) under the boundary conditions (3a) and (9) at small values 
of o-~o by the method of matched asymptotic expansions. 

3.1. Inner solution 

The inner limit is defined as a~ ~ a with t/fixed, and we write 

f =  E f ~ / 2 ,  h =  E hsa~ 2. (I0) 
s = 0  s = 0  

Substituting the above series (10) in equations (6) and (7), and collecting the coefficients of 
various powers of o-~, the momentum equation (6) gives 

fo" + fd' (fo h"o - n h'o/ho) = 0,  (1 l a) 
:it tt n / t: n 

f ;  + f l  ( f o h o - n h o / h o ) + f ;  ( f l h o + n f o h ~  -1 ' , 2 hl - nh l / h  o + nh o h~/ho) = O, (1 lb) 

and the energy equation (7) gives 

I t  

h o -- 0 (12a) 

h~ = 0 (12b) 

h'~ = - foh"dh'o- E f~'2 / h"o (12c) 

hE = - h"d [ f l h'o + fo h'~ + m fo h'o h~ / h  ] + E [ -  2f; ' f ; '  + h i ;  '2 h~/ ho]/h ~ . (12d) 

The solutions of the first three equations (12a, b, c) are 

ho = aotl + Ao , (13a) 

h 1 = a 1 t /+ A 1 , (13b) 

h 2 = - a  o o(tl-111)(aoth +Ao)" fo(ql )d t l~  

- E  f l  (t/-t/1)(a~ +A~176 + a 2 t l + A z "  (13c) 

Here the a's and A's are constants of integration, either of them to be determined from inner 
boundary conditions. 

The solutions (13) are singular for large q and do not satisfy the boundary conditions at 
infinity. This singularity is rather similar to the one-encountered in improving Stokes' solution 
in low Reynolds number flow. 

3.2. Outer solution : 

We now need a different outer limit. From an order of magnitude analysis we introduce the 
outer variables 
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t a~tl, F(t) = = aoJ(tl), H(t)= h(t/) (14) 

and study the limit a~--*0 with t, F and H fixed. With this outer limit the equations (6) and (7) 
become 

r v ,  H" + ~r oo (Fin- nV, Ht/H ) = 0,  (15) 

Htt+FHmHt+aooEF2H-"=O. (16) 

It can be shown very easily that the solution correct to all orders in o-~ of the momentum equa- 
tion (15) which satisfies the boundary conditions at infinity is 

F = t -  a~ fl + O(a~) (17) 

where fl is a constant independent of t but a function of aoo, say 

/~ = E fl~~ (lVa) 
s=0  

and o-~ is used to denote exponentially small terms in the limit o~o---,0. Now with the aid of (17) 
the outer energy equation (16) may be written as 

H t t +  (t -- ff~ fl) n m H t = O ( o - ~ ) .  (18) 

The outer boundary condition is H(oo) = 1. This nonlinear outer equation (18) is correct to all 
orders in Goo, i.e., the error is exponentially small. This is due to the fact that at low Prandtl 
numbers, there is a thin momentum boundary layer inside a thick thermal boundary layer and 
which has the effect of displacing the stream lines from their inviscid position by an amount r 
the q-scale. The outer equations of all orders therefore follow from this simple equation (18) 
which can be solved once and for all. For m = 0 the solution (correct to all orders in o~) to the 
equation (18) which satsfies the boundary condition at infinity is 

H = D + (1 - D) erf [ ( t -  a~/~)/x/2] (19) 

where eft(x) is the well-known error function defined by 

2 i~ eft(x) = - -  e- p~ dp 
7 ~ ,  0 

and D is a constant independent of t but a function of o-oo, say 

D = ~ o  D~~ " 

It appears that for a nonzero value of m, the equation (18) has, in general, to be solved numerical- 
ly. However, for this case (m :p 0) it is interesting to note that when wall is thermally insulated a 
simple solution of the outer equation (18) is H(t) = 1 (correct to zeroth order in a~) which matches 
with the corresponding inner solution. This means that in the case of an insulated wall a few 
lower order terms can be obtained without solving equation (18) numerically. Therefore, we 
study the equation (18) separately for the cases of the insulated wall and the heat transfer. 

3.2.1. Insulated wall 

Before we solve nonlinear outer equation (18) let us note that for an insulated wall h'(0)= 0 
and the solutions of the inner equations (14) give ao = al = a2 = 0. Now the outer expansion of 
the inner solution (13) for large t /may  be written as 

f;' d,1 + (2O) 
0 

We now proceed to solve the outer equation (18). Let us assume 
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H = ~ H s ~  2. (21) 
sin0 

Substituting this expansion (21) and (17a) in equation (18) and collecting the coefficients of 
equal powers of o-~, we get 

Hot, + tH"d Hot = 0,  (22a) 

H lt,-I- t H"d(H ~t + mHotH1/ Ho) = floHr~ Hot , (22b) 

U~. + t U~(U2~ + mUo, U~/Uo) = 

= H~ [flo Hit + rio mHotH1/Ho + fil Hot -  tmH1 H1JHo 
- re(m- 1)tUo, U2/(2U2)]. (22c) 

The corresponding boundary conditions at infinity are 

Ho(oO ) = 1, Hl(oe ) = O, H2(oo ) = 0 . . . . .  (22d) 

The solution of (22a) which satisfies the boundary condition Ho(oO ) = 1 and matches with (20) 
up to zeroth order is 

H o (t) = 1 = A 0 . (23) 

The solution to the first order equation (22b) with boundary condition H~ (oo) = 0  is 

H~ = D 1 [-1 - erf(t/x/2)] , (24) 

The inner expansion of (24) for small t is 

u l  = 0 1  - t ( 2 / ~ ) ~ 0 1  + . . . .  (25) 

Matching (25) with first order terms in (20), we get 

A1 = o l  = i o  I '2 dq. (26) 

Now with the help of (23) and the solution of the outer momentum equation (17), the zeroth 
order inner momentum equation (11a) reduces to the Blasius equation with the solution, say 
f0(q) =/3(q), and the first order equation (llb) has the solution 

L = n A ~ ( . B ' - B ) / 2 .  

Now the solution (17) of the outer momentum equation becomes 

F = t -  1.21678cr~ - 0.28153 (a + w)( 7 - 1)M~ aoo + O (G~). 

The wall recovery temperature is 

T~= 1 + C(Tra~/2) ~ B"2dtl+O(aoo) (27) 
0 

and the recovery factor is 

r = (272aoo) �89 B"2drl+O(a~) 
0 

= 0.9255a~ + O(a~). (28) 

The coefficient of skin friction Cy is given by 

C f 4 R x  = [2f" Pl~/p~o #oo],=o 
= 0.6641 + 0.1530(a + w)(7 -- 1) M z a~ + O (ao~), (29) 

where R~ is the local Reynolds number based upon distance x. 
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3.2.2. Heat transfer 

The nonlinear outer equation (18) can actually be solved once and for all. If 

z = t -  flo- , (30)  

then the outer equation becomes 

H~=+ zH"H= : 0 .  (31) 

This outer equation (31) has been solved numerically (on the IBM 7044 Computer at IIT 
Kanpur) to yield the solution which is also correct to all orders in ao~. The method of solution 
is the same as that of Edward and Tellep [5]. Solutions are obtained for a range of m between 
zero and unity (0< m < 1). The results of the numerical solution necessary for matching are 
shown in Fig. 1, which displays H=(0) vs. H(O) for various values of m. 

Exact solution 
---Approximate solution- 

c:, 

N 
3= 

1.0 

0 o 
0.4 
0.8 -i- 

- - I . 0  

\ , 

\ 

r n = N 2 ~  

- 2 . 0 ~  1.0 
H(0) 

Figure 1. Solution of outer equation (31). 

3.0 

To affect the matching we formally write the inner expansion of the (numerical) outer solu- 
tion at t---> 0. 

H = H(O) + ~ (~l--fl)H~(O) + 0 (a~). (32) 

Here H(0) and H~(0) are constants independent of z but functions of o%, say 

H(O) = E D~a% z, H~(O)= E C~ ~/2" (33) 
s = O  s=O 

Substituting (33) and (17a) in (32) we get the inner expansion of the outer solution 

H = Do + a~ (O, - f lo  Co + r/Co) 

+ a~o(D 2-fl~ C o-floC1 +rlC,) +O(as as q ~  ~ (34) 

For the heat transfer case we prescribe the wall temperature h(0) = hw, which requires from 
the inner solution (13), Ao = h,,,, A~ =A 2 =0. First, matching the zeroth order inner solution 
(13a) with zeroth order terms in (34), we get ao = 0. Now the outer expansion of the inner solution 
(13) for large r /may be written as 
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X h = h~, + a~ al )t + a~o [ae rl + Eh~ n ,,2 a ( t / -  t/i ) fd (~/1)dth3 + O(a~o). (35) 
0 

Matching (34) and (35) we get 

% = 0 ,  D o = h  w 

al =Co ,  Dl  = fioCo 

a2 = Ca + Eh,7" f~'2 dtl 
0 

(36) 

Using the matching results (36) and the solution of the outer equation (17), the solution of the 
zeroth inner momentum equation (11a) is 

fo (tl) = h -  ,/2 B (n h "/2 " ' W  . - -  V I  " 'W  s 

while the first order equation (1 lb), is solved numerically by the Runge-Kut ta  method to give 

fd'(O) = - 0.2857naJh,~, f~ (oo) = - 0.2468nal/h~,~ +" . 

The solution (17) of the outer momentum equation now becomes 

F = t -  1.21678 (T~ ("+ w)/2 _ T(,+ w)/2)a~ + 0.2468 (a + w)~T~ +'~-I cr~ 

- 1.21678a~ - 0.28153 (a + w)(7 - 1)M~ a~o + O (a~). (37) 

The heat transfer rate at the wall is 

S h'(O) = C O a~ + [C 1 +Eh~, "/2 B ''2 (qa)dth]a~ + . . . .  (38) 
0 

Introducing (5) and the recovery temperature (27), we get 

r ' (0) = [ (m+ 1) T $ / ~  +m)Hz(0 ) + (2/re){ (T~- 1)r~ 2b-~-w)/2] a~ + O(aoo). (39) 

For m=0,  making use of {19), the heat transfer rate {39) becomes 

T' (0) = (2a~o/=) 4 [1 - Tw + (T~ - 1) T~/2] +O(a~) .  

If the Prandtl number is constant (b = 0), we get the result which is due to Stewartson [1]. 

To study the heat transfer (39), in detail we rewrite it as 

r ' (0)  = A + a + O (ao~), (40) 

where 

A = (2G| -- 1) T; 2b-~-'~)/z 

= 0.3692 (7 - 1) a~o M 2 T~ (2b-~- w)/2 (41) 

is the contribution to heat transfer due to Mach number and 

= a~ (m + i)H~ (0) T$/~l +") (42) 

is due to the prescribed wall temperature. The quatntity a/o-~ is displayed in Fig. 2 for various 
values of Tw and m and is determined by the following procedure. For a given Tw and m, we 
first determine H(0) = T2 m +~). From Fig. 17 we obtain H~(0) for a given H(0) and m. 

The skin friction coefficient is 

C y x / R  ~ = 0.6641 (T~ "+ w)12 - -  Tr(a+ w)/2) __ 0.4040a (a + w)/Tw 

+ 0.6641+ 0.1530(a + w) (? -  z 1)M~ a~ + O(aoo). (43) 

When the wall is insulated, the above results (43) reduces to (29) 
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Exad solution 
---Approximate sc 
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1.0 

0 - - b  8 
0.4 
0.8 

m=( 

-2.0 

' \ \ 7  I I I I ~\ 
0 1.0 2.0 3.0 

Tw 
Figure 2. Heat transfer contribution ~ due to prescribed wall temperature. 

4. Discussion 

The recovery factor result (28) up to the order a~ is independent of the thermal properties. 
Further, the approximate solution of the outer equation (A-2) leads to the recovery factor 

result which is identical to (28). It is interesting to note that this result (28) is the same as that 
obtained by various authors previously, when either ## is constant or when the flow properties 
are independent of the temperature. It seems that the precise dependence of p,/~ and a on the 
temperature is not crucial when the Prandtl number is low. This is plausible, because the plate 
is thermally insulated and the fluid is highly conducting, therefore, the variation of the tem- 
perature across the boundary layer is small. Incidently, when the Prandtl number is of order 
unity the precise description of thermal properties is also not crucial since Kuerti's review [6] 
shows that for an insulated wall the temperature variation throughout the boundary layer is 
approximately the same function of velocity for various viscosity ia~vs. 

The skin friction result (29) for an insulated wall shows that the leading term is the Blasius 
value, while the first order term shows dependence on thermal properties and free stream 
Mach number. On the other hand, for the heat transfer case the skin friction result (43), even to 
zeroth order, depends upon thermal properties and wall temperature, while the first order 
terms depend also upon the heat transfer. 

The heat transfer result (39) is a complicated function of the fluid properties, Mach number 
and wall temperature. The contribution A (41) to the heat transfer due to compressibility is 
proportional to 2 Moo aoo, while the contribution ~ (42) due to prescribed wall temperature is 
shown in Fig. 2. It is seen from the Fig. 2 that an increase of m decreases I~/~1 for Tw < 1, 
increases it for Tw > 1 and remains zero if T~, = 1. The approximate solution to the outer equa- 
tion (A-2) yields an exact solution when m = 0 and for other values of m the error increases as m 
increases. To study the error in the approximate solution we consider the case of largest error 
(greatest m in our calculations i.e. m = 1) and plot e/a~ (A-4) as shown in Fig. 2. It is seen that the 
approximate solution underestimates I c~/o'~lfor Zw< 1, overestimates for Tw > 1 and is exact 
for T,~ = 1. This under- and overestimation increases we go away from Tw = 1. Furthermore, it is 
clear from Fig. 2 that the result of the approximate analysis is good for 0.7 < T,~ < 1.3, the range 
in which the low Prandtl number analysis is most useful. 
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Appendix 

Approximation solution 

The outer equation (31) may formally be converted into an integral equation which satisfies 
the boundary condition at infinity 

H = D+(1 - D )  e-Odz e-Odz (A-I) 
0 ,/0 

where 

z H "  dz . =.o 

To get a quick estimate of the solution, we consider the first term of H(z) = H(O) = D near the 
wall, then q5 = z 2 Dm/2 and we get 

H = D + (1 - D) erf [z(Dm/2)~]. (A-2) 

The inner expansion of this outer solution (A-2) as t ~ 0  is 

H = D O + a~ IDa + (2D"d/n)+(Do - 1)(flo - ~/)] 

+ a~ [D 2 + (2D"d/r@O 1 {1 + m(D o - 1)/(2D0) } (rio - t/) 

+ fll (2D"d/n)~(Do - 1)] + O (a~). (A-3) 

For an insulated wall matching (A-3) and (19), it is seen that the expressions for the recovery 
factor and skin friction are the same as (28) and (29) respectively. For the heat transfer case, 
matching (A-3) and (35) gives an expression for A which is the same as (42) while for a we obtain 

c~= (m + 1) 7-~/t2(1 +,,)1 [T~/(I +m)_ T~]a~.  (A-4) 

The coefficient of skin friction can be obtained by substituting e given by (A-4) in (43). 
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